Научно-познавательний сайт. Мы держим руку на пульсе новых открытий!
Найти: на
Добро пожаловать!

Главная страница / Статьи / Новости / Опрос / О сайте / Архив / Cегодня:
 
Все статьи

Атомы и молекулы

Электричество и магнетизм

Энергия солнца

Вертолёты и автожиры

Космический телескоп«Хаббл»

Освещение

Сопротивление материалов

Мультимедиа

Паровые машины

Поезда и железные дороги

Ракеты

Время

В полет!

Виртуальный мир

Водоснабжение

Законы случайного

 

Реклама

 

СТАТЬИ

Виртуальный мир

Виртуальная реальность (ВР) — это технология, которая позволяет Вам внедриться в смоделированный компьютером мир и взаимодействовать с ним. Этот мнимый мир кажется реальным благодаря специальной графике, видеоизображениям и стереозвуку.

Сфера применения виртуальной реальности весьма широка — от занимательных диалоговых видеоигр, в которых вы можете управлять автомобилем, пилотировать самолет, нестись на лыжах вниз по горному склону или охотиться за динозавром — до вспомогательных средств обучения врачей искусству хирургии или летчиков безопасному пилотированию воздушного корабля. Машина способна сгенерировать "мир" размером с нашу вселенную или же столь микроскопичный, как атом или молекула.

Две стороны медали

Примеров применения виртуальной реальности бесконечно много: управление воздушным движением, медицина, архитектура, развлечения, конторские операции и техническая эстетика... Однако у всего есть и теневая сторона. Виртуальная реальность могла бы также использоваться в таких разрушительных целях, как война или преступление. Мысль о виртуальной реальности возникла еще в 30-х годах, когда ученые занимались разработкой первого тренажера — имитатора полета для обучения летчиков. Идея состояла в том, чтобы создать у пилота впечатление, будто он управляет настоящим самолетом. Для еще большего усиления иллюзии на экране имитатора воспроизводились кадры взлетно-посадочных полос.

В 1965 г. американцу Айвэну Сазерленду случайно пришла в голову одна идея, которую он обнародовал в статье под названием "Совершенный дисплей". Сводилась она к тому, чтобы создать, используя два крошечных телевизора — по одному для каждого глаза — переносной, или персональный виртуальный мир. Для ее воплощения в жизнь он также разработал дисплей, укрепляемый на голове. Хотя его изобретение работало и он создал своего рода виртуальный мир, изображения оказались слишком грубы и безыскусны. Другая сложность была связана со шлемом. Он был так тяжел и громоздок, что приходилось его подвешивать к потолку. Да и стоил он очень дорого. Ученые, взявшиеся в последующие годы доработать исходную идею Сазерленда, немало в этом преуспели. Позднее, в 1985 году, Майкл Макгриви из НАСА разработал намного более дешевый и легкий вариант шлема, взяв обычный мотоциклетный и приспособив к нему миниатюрные экраны дисплея, а также специальные датчики, которые реагировали на движения головы и были связаны с компьютерами большой мощности и чувствительности.

В том же 1985 году другой разработчик ВР, Майрон Крейгер, открыл в Музее естествознания штата Коннектикут так называемый "Видеоплейс". В общем, "Видеоплейс" был ничем иным, как рядом помещений, находясь в которых, причем даже в разных, посетители могли посредством интерактивной графической системы погрузиться в одно и то же виртуальное пространство, жонглировать в нем различными объектами, вместе танцевать и рисовать.

Последним аппаратным компонентом для полного комплекта виртуальной реальности стала перчатка. Разработали ее прототип в начале 80-х, но в современном виде виртуальная реальность родилась в 1986 г., после того, как программист Джарон Лениер придумал новый вариант перчатки. Так впервые появился единый комплект, состоящий из ВР-шлема и перчаток. Именно Лениер дал новой технологии название "виртуальная реальность".

Три типа ВР

Различают три основных формы виртуальной реальности. Первая из них, вероятно, наиболее известна. Комплект для нее состоит из шлема, снабженного маленькими ТВ-экранами и наушниками, и перчатки (в некоторых системах вместо нее используют джойстик или "волшебную палочку"). Шлем и перчатка связаны с компьютерами, запрограммированными специальными звуками и графикой, которые меняются в зависимости от предназначения системы: если она используется проектировщиками или архитекторами, то это будут, вероятно, строения или панорамы. Нужные изображения затем воспроизводятся на телеэкранах внутри шлема. Для создания трехмерного эффекта каждый телеэкран расположен под слегка отличным углом. Когда вы надеваете шлем виртуальной реальности, образы на телеэкранах целиком заполнят ваше поле зрения и вы погрузитесь в виртуальный мир. А через наушники вы услышите все те звуки, которые соответствуют видимым образам.

И шлем, и перчатка (или джойстик) оснащены специальными датчиками, которые позволяют компьютеру улавливать все движения головы и рук. Когда вы поворачиваете голову, чтобы осмотреться по сторонам, компьютер изменяет вашу точку обзора — как будто вы фактически находитесь внутри изображения. Все происходит в реальном времени (с той же скоростью и в тот же момент, как если бы происходило в реальном мире). Перчатка позволяет вам "трогать" виртуальные объекты и "брать" их в руки. С ее помощью вы можете даже вносить изменения в виртуальный мир, меняя расположение виртуальных объектов.

Камеры и экраны

Во второй разновидности ВР для слежения за изображением пользователя в виртуальном мире, в котором также можно подбирать или перемещать объекты, используются видеокамеры. Обе системы ВР позволяют принимать участие в действиях сразу нескольким людям.

В основе же последнего вида ВР лежит воспроизведение трехмерных изображений на большом изогнутом экране. Такая форма помогает усилить у Вас ощущение того, что Вы находитесь в виртуальном мире. Дополнительный эффект присутствия создают специальные трехмерные очки. Вероятно, Вам более всего знакома ВР, применяющаяся в видеоиграх в залах игровых автоматов ("аркадах") и тематических парках Европы, США и Японии. Теперь есть много ВР-игр, в которых может участвовать одновременно несколько человек.

В 1991 г. на рынке появилась игра под названием "Дактил Найтмэр". В ее виртуальном мире впервые могли одновременно друг друга преследовать и перестреливаться два участника.

Подобные "аркады" явились только началом. По мере совершенствования технологии ВР начали возникать тематические парки. В таком парке сосуществуют несколько виртуальных миров: их "жители" могут принять участие в различных играх в жанре "фэнтези", причем для создания присущей ему атмосферы речь воспроизводится соответствующими электронными голосами.

"Аркады" и тематические парки — замечательное развлечение, однако об их влиянии на игроков предстоит еще многое узнать. Многие после ВР-игры жалуются на плохое самочувствие — чаще всего на головные боли и головокружение. Доказано также, что у некоторых людей эти игры могут вызывать зависимость, риск возникновения которой следует тщательно изучить.

Несмотря на подобные проблемы и причины для беспокойства, ВР имеет много несомненных выгод. Инвалидам она дает возможность принимать участие в обычно не доступных им видах деятельности. В виртуальном мире люди в инвалидных креслах могут, например, испытывать свободу движений, которой они лишены в мире реальном. Очень немногие могут себе сегодня позволить приобрести систему ВР. Но благодаря техническому прогрессу легкие шлемы и более мощные компьютеры вскоре принесут ВР в дома среднего человека.

Применение в САПР

Виртуальная реальность широко применяется почти во всех отраслях архитектуры и промышленной эстетики. Уже с середины 1970-ых важным средством проектирования являются системы автоматизированного проектирования (САПР) позволяющие пользователю рисовать на компьютерном экране трехмерные изображения. Однако если у Вас нет шлема ВР и перчатки для вы­вода этих изображений, погрузиться в свой виртуальный мир Вам не удастся.

Первое письменное свидетельство об использовании виртуальной реальности в сфере технической эстетики связывается с работами в Университете Северной Каролины (США). Тамошние архитекторы создали виртуальное здание и затем "исходили" его вдоль и поперек. Они могли открывать двери и окна, проверяя, все ли может работать, и даже расставлять в некоторых помещениях мебель. Осматривая свой дом "изнутри", создатели могли отыскать любые допущенные в нем ошибки и исправить их прежде, чем начинать какие-либо строительные работы.

Сперва испытайте

Одно из главных качеств, привлекающих внимание крупного капитала к виртуальной реальности — это то, что она может сэкономить деньги. Разве не искушает возможность обнаружения конструкторских недоработок на столь ранней стадии (представляете, во что может обойтись постройка здания, которое приходится сносить и возводить заново только потому, что оно было неправильно задумано)! Виртуальная реальность позволяет архитекторам также спроектировать несколько различных вариантов здания, а затем проектировщики и представители общественности могут "побродить" вокруг, ощутить, как выглядят различные решения, и решить, что им больше всего нравится и что даст наибольший эффект.

Виртуальная реальность открывает огромные возможности. Будущие жители новых городов смогут "прохаживаться" по виртуальным улицам, торговым и жилым кварталам, паркам задолго до того, как в их основание ляжет первый кирпич. Существуют планы перепроектирования с использованием виртуальной реальности всего главного города Германии —Берлина.

Проектирование

Виртуальная реальность становится огромным подспорьем в авиационной отрасли, позволяя избежать необходимости сооружать несколько различных макетов (моделей в полную величину). Каждый раз, когда инженеры проектируют новый самолет или вертолет, им, чтобы гарантировать его летные качества и безопасность пассажиров и экипажа, приходится создавать образцы. Если с образцом что то не в порядке, они возвращаются к чертежной доске, вносят изменения, и затем строят другой. Дело это очень дорогостоящее и длительное.

Используя ВР, конструкторы могут проектировать, строить и испытывать свой летательный аппарат в виртуальной среде без того, чтобы им приходилось создавать реальный самолет. Этот метод также дает проектировщику реальную возможность опробовать различные концепции — детально все их рассмотреть, а тогда выбрать самую лучшую. НАСА воспользовалась виртуальной реальностью для разработки проекта вертолета, а компания "Боинг" — при создании последней модели своего самолета.

Врачи, вооружившись возможностями виртуальной реальности, сумели уже побывать внутри человеческого тела. В Университете Северной Каролины метод ВР позволил врачам проникнуть в грудную клетку пациента, больного раком, чтобы удостовериться, что пучок ионизирующего излучения, которым лечили рак, попадет в нужное место. Скоро медики смогут рассмат­ривать и изучать опухоль своими глазами в объемном изображении, а не на двухмерных снимках и рентгеновских пленках.

Виртуальное тело

Некий убийца, казненный в США на электрическом стуле, завещал свое тело науке. Его труп препарировали на сверхтонкие срезы, которые потом пригодились при создании виртуального тела для медицинских исследований, скоро все студенты-медики вместо реальных пациентов смогут обучаться на виртуальных телах.

Виртуальная реальность используется и на микроскопическом уровне в фармацевтических исследованиях. Ученые из Университета Северной Каролины имеют возможность, создав определенные молекулы, визуализировать их и "проверять" их взаимодействие друг с другом. До появления метода виртуальной реальности эта проверка была очень медленной и сложной. Поэтому вполне вероятно, что виртуальная реальность в будущем окажет заметное влияние на сроки разработки и доступность новых медикаментов и средств лечения.

Виртуальная реальность важна и потому, что помогает наглядно представить неизведанное или невидимое. Возможно, в результате ВР-операторы сумеют с помощью робота выполнять ремонт в космическом пространстве. Так, например, методика под названием "виртуальное кукловождение" построена на том, что квалифицированный оператор управляет роботом, который подражает всем движениям своего "кукловода".

Оператор знает, что приказать роботу сделать, куда двигаться и какие кнопки нажимать, так как видит все происходящее глазами робота. Робот-виртуальная марионетка может применяться в условиях повышенного риска — например, при обезвреживании бомб или пожаротушении. Ученые из Солфордского университета в Англии провели множество испытаний таких роботов. Они уже находят применение в опасных, но крайне важных операциях по захоронению ядерных отходов.

Эти автоматы окажут большую помощь при работе с различными источниками загрязнения окружающей среды. Они способны отправиться туда, где не может ступить нога человека, и производить операции с высокотоксичными испарениями и сбросами. Такие роботы,

вероятно, могли бы также использоваться во всем мире при ремонте или выводе из эксплуатации неисправных или устаревших атомных электростанций в целях предотвращения ядерных аварий.

В Американском училище аэронавтики в Нью-Йорке виртуальную реальность применили для решения экологической проблемы. Студенты на занятиях часто занимались сваркой, в результате которой воздух в близлежащем районе загрязнялся газами. Училище приобрело систему виртуальной реальности, специально запрограммированную по его заказу, чтобы моделировать инструментальные средства, изменения температуры и цвета металла. Теперь студенты могут заниматься сваркой в виртуальной реальности, так что никаких токсичных газов больше не образуется!

Жители районов, прилегающих к военным полигонам, также могут извлечь выгоду из ВР. Использование ВР-систем позволило бы снизить уровни шума от низколетящих реактивных самолетов, а окружающая местность будет меньше страдать от бронированной техники на учениях.

 

 
 

| Главная страница | Статьи | Новости | О сайте | Архив |
Copyright ©2008 Personal
Hosted by uCoz